By Topic

A robust design criterion for interpretable fuzzy models with uncertain data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kumar, M. ; Fac. of Medicine, Rostock Univ., Germany ; Stoll, R. ; Stoll, N.

We believe that nonlinear fuzzy filtering techniques may be turned out to give better robustness performance than the existing linear methods of estimation (H2 and H filtering techniques), because of the fact that not only linear parameters (consequents), but also the nonlinear parameters (membership functions) attempt to identify the uncertain behavior of the unknown system. However, the fuzzy identification methods must be robust to data uncertainties and modeling errors to ensure that the fuzzy approximation of unknown system's behavior is optimal in some sense. This study presents a deterministic approach to the robust design of fuzzy models in the presence of unknown but finite uncertainties in the identification data. We consider online identification of an interpretable fuzzy model, based on the robust solution of a regularized least-squares fuzzy parameters estimation problem. The aim is to resolve the difficulties associated with the robust fuzzy identification method due to lack of a priori knowledge about upper bounds on the data uncertainties. The study derives an optimal level of regularization that should be provided to ensure the robustness of fuzzy identification strategy by achieving an upper bound on the value of energy gain from data uncertainties and modeling errors to the estimation errors. A time-domain feedback analysis of the proposed identification approach is carried out with emphasis on stability, robustness, and steady-state issues. The simulation studies are provided to show the superiority of the proposed fuzzy estimation over the classical estimation methods.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:14 ,  Issue: 2 )