By Topic

Early, accurate and fast yield estimation through Monte Carlo-alternative probabilistic behavioral analog system simulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Topaloglu, R.O. ; Dept. of Comput. Sci. & Eng., California Univ., La Jolla, CA

Monte Carlo analysis has so far been the corner stone for analog statistical simulations. Fast and accurate simulations are necessary for stringent time-to-market, design for manufacturability and yield concerns in the analog domain. Although Monte Carlo attains accuracy, it does so with a sacrifice in run-time for analog simulations. In this paper, we propose a fast and accurate probabilistic simulation method alternative to Monte Carlo using deterministic sampling and weight propagation. We furthermore propose accuracy improvement algorithms and a fast yield calculation method. The proposed method shows accuracy improvement combined with a 100-fold reduction in run-time with respect to a 1000-sample Monte Carlo analysis

Published in:

VLSI Test Symposium, 2006. Proceedings. 24th IEEE

Date of Conference:

April 30 2006-May 4 2006