By Topic

Nearest Surrounder Queries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
K. C. K. Lee ; Pennsylvania State University ; Wang-Chien Lee ; Hong Va Leong

In this paper, we study a new type of spatial query, Nearest Surrounder (NS), which searches the nearest surrounding spatial objects around a query point. NS query can be more useful than conventional nearest neighbor (NN) query as NS query takes the object orientation into consideration. To address this new type of query, we identify angle-based bounding properties and distance-bound properties of Rtree index. The former has not been explored for conventional spatial queries. With these identified properties, we propose two algorithms, namely, Sweep and Ripple. Sweep searches surrounders according to their orientation, while Ripple searches surrounders ordered by their distances to the query point. Both algorithms can deliver result incrementally with a single dataset lookup. We also consider the multiple-tier NS (mNS) query that searches multiple layers of NSs. We evaluate the algorithms and report their performance on both synthetic and real datasets.

Published in:

22nd International Conference on Data Engineering (ICDE'06)

Date of Conference:

03-07 April 2006