By Topic

Super-Scalar RAM-CPU Cache Compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zukowski, M. ; Centrum voor Wiskunde en Informatica, The Netherlands ; Heman, S. ; Nes, N. ; Boncz, P.

High-performance data-intensive query processing tasks like OLAP, data mining or scientific data analysis can be severely I/O bound, even when high-end RAID storage systems are used. Compression can alleviate this bottleneck only if encoding and decoding speeds significantly exceed RAID I/O bandwidth. For this purpose, we propose three new versatile compression schemes (PDICT, PFOR, and PFOR-DELTA) that are specifically designed to extract maximum IPC from modern CPUs. We compare these algorithms with compression techniques used in (commercial) database and information retrieval systems. Our experiments on the MonetDB/X100 database system, using both DSM and PAX disk storage, show that these techniques strongly accelerate TPC-H performance to the point that the I/O bottleneck is eliminated.

Published in:

Data Engineering, 2006. ICDE '06. Proceedings of the 22nd International Conference on

Date of Conference:

03-07 April 2006