By Topic

C-Cubing: Efficient Computation of Closed Cubes by Aggregation-Based Checking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dong Xin ; University of Illinois at Urbana-Champaign ; Zheng Shao ; Jiawei Han ; Hongyan Liu

It is well recognized that data cubing often produces huge outputs. Two popular efforts devoted to this problem are (1) iceberg cube, where only significant cells are kept, and (2) closed cube, where a group of cells which preserve roll-up/drill-down semantics are losslessly compressed to one cell. Due to its usability and importance, efficient computation of closed cubes still warrants a thorough study. In this paper, we propose a new measure, called closedness, for efficient closed data cubing. We show that closedness is an algebraic measure and can be computed efficiently and incrementally. Based on closedness measure, we develop an an aggregation-based approach, called C-Cubing (i.e., Closed-Cubing), and integrate it into two successful iceberg cubing algorithms: MM-Cubing and Star-Cubing. Our performance study shows that C-Cubing runs almost one order of magnitude faster than the previous approaches. We further study how the performance of the alternative algorithms of C-Cubing varies w.r.t the properties of the data sets.

Published in:

Data Engineering, 2006. ICDE '06. Proceedings of the 22nd International Conference on

Date of Conference:

03-07 April 2006