By Topic

Progress Towards A High-Resolution Retinal Prosthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
J. D. Weiland ; Doheny Retina Institute, Doheny Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA ; W. Fink ; M. Humayun ; Wentai Liu
more authors

Simulations of artificial vision suggest that 1000 electrodes may be required to restore vision to individuals with diseases of the outer retina. In order to achieve such an implant, new technology is needed, since the state-of-the-art implantable neural stimulator has at most 22 contacts with neural tissue. Considerable progress has been made towards that goal with the development of image processing, microelectronics, and polymer based electrodes and interconnects. An image processing system has been realized that is capable of real-time implementation of image decimation and filtering (for example, edge detection). Application specific integrated circuits (ASICs) have been designed and tested to demonstrate closed loop power control and efficient microstimulation. A novel packaging process has been developed that is capable of simultaneously forming a receiver coil, interconnects, and stimulating electrodes

Published in:

2005 IEEE Engineering in Medicine and Biology 27th Annual Conference

Date of Conference:

17-18 Jan. 2006