Cart (Loading....) | Create Account
Close category search window

Clinical Content Detection for Medical Image Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen, L. ; Dept. of Comput., Surrey Univ., Guildford ; Tang, H.L. ; Wells, I.

Content-based image retrieval (CBIR) is the most widely used method for searching large-scale medical image collections; however this approach is not suitable for high-level applications as human experts are accustomed to manage medical images based on their clinical features rather than primitive features. Automatic detection of clinical features in a large-scale image database and realization of image retrieval by clinical content are still open issues. This paper presents a Markov random field (MRF) based model for clinical content detection. Multiple classifiers are applied to recognize a wide range of clinical features in a large-scale histological image database, and they are further combined to generate more reliable and robust estimation. Spatial contexts will cooperate with local estimations in the MRF based model to make a decision based on global consistency. The detected clinical features will provide a basis for image retrieval. Experiments have been carried out in a large-scale histological image database with promising results

Published in:

Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.