By Topic

A Haptic Interface Based on Potential Mechanical Energy to Investigate Human Motor Control using fMRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Dovat, L. ; Laboratory of Robotic Syst., Ecole Polytech. Fed. de Lausanne ; Gassert, R. ; Chapuis, D. ; Ganesh, G.
more authors

This paper describes a mechanical interface to use in conjunction with fMRI, in order to infer the brain mechanisms of human motor learning. Innovative mechanical concepts based on gravity and elastic forces were used to generate typical stable and unstable dynamic interactions at the hand during multijoint arm movements. Two designs were retained and implemented from MR compatible materials. The first uses a spring constrained between two specially designed surfaces and the other a capstan to transform the force induced by a groove carved on a shaft. These two degree-of-freedom mechanical interfaces have been constructed and tested. The use of a capstan mechanism was found to be limited by excessive friction, however, the method using a machined surface provides a simple and effective interface to investigate human motor control

Published in:

Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the

Date of Conference:

17-18 Jan. 2006