By Topic

Napping backbones: energy efficient topology control for wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghosh, R. ; Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA ; Basagni, S.

In this study we have investigated the effectiveness of building "napping backbones" for data dissemination in wireless sensor networks. The NAPBACK protocol builds connected backbones whose nodes are endowed with a sleep/awake schedule that induces considerable energy savings, and hence prolongs the network lifetime. Via simulations on networks with up to 250 nodes we have observed increases on network lifetime up to almost 70% with respect to previous topology control protocols (S-DMAC). Increased latency is the price to pay for the improvements on lifetime, which currently makes NAPBACK a viable solution for delay-insensitive WSN applications. Multifold are the research directions opened by this initial study. We are planning to design different methods for defining the schedules of the backbone nodes. Final aims include the minimization of the latency, as well as throughput maximization. Sleep/awake scheduling methods should also be independent of nodes synchronization, and could be based on deterministic strategies, rather than the simple randomized technique used here.

Published in:

Radio and Wireless Symposium, 2006 IEEE

Date of Conference:

17-19 Jan. 2006