By Topic

Application of An Improved Particle Swarm Optimization Algorithm for Neural Network Training*

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fuqing Zhao ; School of Computer and Communication, Lanzhou University of Technology, 730050 Lanzhou, P.R.China. ; Zongyi Ren ; Dongmei Yu ; Yahong Yang

Particle swarm optimization (PSO) is an evolutionary computation technique developed by Kennedy and Eberhart in 1995 and has been applied successfully to various optimization problems. The PSO idea is inspired by natural concepts such as fish schooling, bird flocking and human social relations. It combines local search (by self experience) and global search (by neighboring experience), possessing high search efficiency. Backpropagation (BP) is generally used for neural network training. It is very important to choose a proper algorithm for training a neural network. In this paper, we present a modified particle swarm optimization based training algorithm for neural network. The proposed method modify the trajectories (positions and velocities) of the particle based on the best positions visited earlier by themselves and other particles, and also incorporates population diversity method to avoid premature convergence. Experimental results have demonstrated that the modified PSO is a useful tool for training neural network

Published in:

2005 International Conference on Neural Networks and Brain  (Volume:3 )

Date of Conference:

13-15 Oct. 2005