By Topic

Estimation of radio refractivity from Radar clutter using Bayesian Monte Carlo analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yardim, C. ; Electr. & Comput. Eng. Dept., Univ. of California, La Jolla, CA, USA ; Gerstoft, P. ; Hodgkiss, W.S.

This paper describes a Markov chain Monte Carlo (MCMC) sampling approach for the estimation of not only the radio refractivity profiles from radar clutter but also the uncertainties in these estimates. This is done by treating the refractivity from clutter (RFC) problem in a Bayesian framework. It uses unbiased MCMC sampling techniques, such as Metropolis and Gibbs sampling algorithms, to gather more accurate information about the uncertainties. Application of these sampling techniques using an electromagnetic split-step fast Fourier transform parabolic equation propagation model within a Bayesian inversion framework can provide accurate posterior probability distributions of the estimated refractivity parameters. Then these distributions can be used to estimate the uncertainties in the parameters of interest. Two different MCMC samplers (Metropolis and Gibbs) are analyzed and the results compared not only with the exhaustive search results but also with the genetic algorithm results and helicopter refractivity profile measurements. Although it is slower than global optimizers, the probability densities obtained by this method are closer to the true distributions.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:54 ,  Issue: 4 )