By Topic

Method of moments analysis of the backscattering properties of a corrugated trihedral corner reflector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hanninen, I. ; Electromagn. Lab., Helsinki Univ. of Technol., Espoo, Finland ; Pitkonen, Mikko ; Nikoskinen, K.I. ; Sarvas, J.

A method of moments (MoM) formulation is developed to analyze the backscattering properties of an anisotropic trihedral corner reflector, which is obtained by corrugating one or several of its interior faces. The proposed formulation treats the corrugated surface as ideally tuned to the incident wave frequency. The numerical analysis of the studied structures has been done using closed-form formulas and accurate numerical integration. The focus of the study reported in this paper has been the polarization responses of ideally tuned corrugated reflectors, which have interesting properties, particularly regarding elliptically or circularly polarized waves. We numerically verify that an appropriately corrugated reflector returns elliptically and circularly polarized waves with the same handedness as the incident wave. For a linearly polarized incident wave, the corner reflector is able to rotate them by 90°. Also the effect of the direction of the corrugation to the backscattering properties is studied.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:54 ,  Issue: 4 )