Cart (Loading....) | Create Account
Close category search window

Adaptive enhanced fuzzy sliding-mode control for electrical servo drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rong-Jong Wai ; Dept. of Electr. Eng., Yuan Ze Univ., Chung Li, Taiwan ; Kuo-Ho Su

The design and properties of an adaptive enhanced fuzzy sliding-mode control (AEFSMC) system for an indirect field-oriented induction motor (IM) drive to track periodic commands are addressed in this study. A newly designed EFSMC system, in which a translation-width idea is embedded into the FSMC, is introduced initially. Moreover, to confront the uncertainties existed in practical applications, an adaptive tuner, which is derived in the sense of the Lyapunov stability theorem, is utilized to adjust the EFSMC parameter for further assuring robust and optimal control performance. The indirect field-oriented IM drive with the AEFSMC scheme possesses the salient advantages of simple control framework, free from chattering, stable tracking control performance, and robust to uncertainties. In addition, numerical simulation and experimental results due to periodic sinusoidal commands are provided to verify the effectiveness of the proposed control strategy, and its advantages are indicated in comparison with FSMC and EFSMC systems.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:53 ,  Issue: 2 )

Date of Publication:

April 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.