By Topic

Mechanical sensorless speed control of permanent-magnet AC motors driving an unknown load

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A new sensorless scheme for high-performance speed control of permanent-magnet ac motors (PMACMs) driving an unknown load is proposed. This scheme uses an extended nonlinear reduced-order observer to estimate the induced electromotive force (EMF) and load torque. From the estimated variables, the rotor position, the rotor speed, and the position derivative of flux are calculated and are used to close the control loop. In order to improve the drive performance, the estimated load torque is incorporated as a feedforward signal in the closed control loop. In addition, the proposed sensorless PMACM drive allows the torque-ripple and copper-loss minimization for motors with an arbitrary EMF waveform. Simulation and experimental results to validate the proposal are presented in this paper.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:53 ,  Issue: 2 )