By Topic

Nonlinear dynamics of iterative decoding systems: analysis and applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kocarev, L. ; Inst. for Nonlinear Sci., Univ. of California, La Jolla, CA, USA ; Lehmann, F. ; Maggio, G.M. ; Scanavino, B.
more authors

Iterative decoding algorithms may be viewed as high-dimensional nonlinear dynamical systems, depending on a large number of parameters. In this work, we introduce a simplified description of several iterative decoding algorithms in terms of the a posteriori average entropy, and study them as a function of a single parameter that closely approximates the signal-to-noise ratio (SNR). Using this approach, we show that virtually all the iterative decoding schemes in use today exhibit similar qualitative dynamics. In particular, a whole range of phenomena known to occur in nonlinear systems, such as existence of multiple fixed points, oscillatory behavior, bifurcations, chaos, and transient chaos are found in iterative decoding algorithms. As an application, we develop an adaptive technique to control transient chaos in the turbo-decoding algorithm, leading to a substantial improvement in performance. We also propose a new stopping criterion for turbo codes that achieves the same performance with considerably fewer iterations.

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 4 )