By Topic

Neyman-pearson detection of gauss-Markov signals in noise: closed-form error exponentand properties

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Y. Sung ; Qualcomm Inc., San Diego, CA, USA ; L. Tong ; H. V. Poor

The performance of Neyman-Pearson detection of correlated random signals using noisy observations is considered. Using the large deviations principle, the performance is analyzed via the error exponent for the miss probability with a fixed false-alarm probability. Using the state-space structure of the signal and observation model, a closed-form expression for the error exponent is derived using the innovations approach, and the connection between the asymptotic behavior of the optimal detector and that of the Kalman filter is established. The properties of the error exponent are investigated for the scalar case. It is shown that the error exponent has distinct characteristics with respect to correlation strength: for signal-to-noise ratio (SNR) ≥1, the error exponent is monotonically decreasing as the correlation becomes strong whereas for SNR<1 there is an optimal correlation that maximizes the error exponent for a given SNR.

Published in:

IEEE Transactions on Information Theory  (Volume:52 ,  Issue: 4 )