By Topic

Information-theoretic upper and lower bounds for statistical estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tong Zhang ; Yahoo Inc., New York, NY

In this paper, we establish upper and lower bounds for some statistical estimation problems through concise information-theoretic arguments. Our upper bound analysis is based on a simple yet general inequality which we call the information exponential inequality. We show that this inequality naturally leads to a general randomized estimation method, for which performance upper bounds can be obtained. The lower bounds, applicable for all statistical estimators, are obtained by original applications of some well known information-theoretic inequalities, and approximately match the obtained upper bounds for various important problems. Moreover, our framework can be regarded as a natural generalization of the standard minimax framework, in that we allow the performance of the estimator to vary for different possible underlying distributions according to a predefined prior

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 4 )