By Topic

Compressed sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Donoho, D.L. ; Dept. of Stat., Stanford Univ., CA

Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0<ples1. The N most important coefficients in that expansion allow reconstruction with lscr2 error O(N1/2-1p/). It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients. Moreover, a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing. The nonadaptive measurements have the character of "random" linear combinations of basis/frame elements. Our results use the notions of optimal recovery, of n-widths, and information-based complexity. We estimate the Gel'fand n-widths of lscrp balls in high-dimensional Euclidean space in the case 0<ples1, and give a criterion identifying near- optimal subspaces for Gel'fand n-widths. We show that "most" subspaces are near-optimal, and show that convex optimization (Basis Pursuit) is a near-optimal way to extract information derived from these near-optimal subspaces

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 4 )