By Topic

Power line filter design for conducted electromagnetic interference using time-domain measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kumar, M. ; Bhabha Atomic Res. Centre, Mumbai ; Agarwal, V.

A time-domain technique for the design of passive power line conducted electromagnetic interference (EMI) filters in the frequency range 150 kHz-30 MHz is described. A digital storage oscilloscope (DSO) with adequate sampling, storing and processing features is sufficient for the design using the proposed technique. Accordingly, Agilent's Infiniium Oscilloscope (Model 54810A) has been used. The signals from LISN are directly fed into the two channels of the DSO where they are added and subtracted to separate the CM and DM components, thereby eliminating the need for common-mode-differential mode (CM-DM) separator. These components are stored in the DSO. A specially designed filter design software (FDS), residing in the DSO, estimates the noise spectrum by computing the Bartlett and Welch periodograms. It also computes the filter component values. Thus, the sampling of the conducted noise, separation of CM and DM components, signal processing, and filter value computations are all done using one DSO. A spectrum analyzer is not required. Bartlett periodograms have been preferred over Welch periodograms due to low memory storage requirements of the former. The proposed technique has been applied to the design of power line filter for a switched mode power supply (SMPS), and satisfactory results have been obtained. The proposed measurement scheme is compact, economical, and convenient. All the details of this work are presented

Published in:

Electromagnetic Compatibility, IEEE Transactions on  (Volume:48 ,  Issue: 1 )