By Topic

High-performance medical image registration using new optimization techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. P. Wachowiak ; Imaging Labs., Robarts Res. Inst., London, Ont., Canada ; T. M. Peters

Optimization of a similarity metric is an essential component in intensity-based medical image registration. The increasing availability of parallel computers makes parallelizing some registration tasks an attractive option to increase speed. In this paper, two new deterministic, derivative-free, and intrinsically parallel optimization methods are adapted for image registration. DIviding RECTangles (DIRECT) is a global technique for linearly bounded problems, and multidirectional search (MDS) is a recent local method. The performance of DIRECT, MDS, and hybrid methods using a parallel implementation of Powell's method for local refinement, are compared. Experimental results demonstrate that DIRECT and MDS are robust, accurate, and substantially reduce computation time in parallel implementations

Published in:

IEEE Transactions on Information Technology in Biomedicine  (Volume:10 ,  Issue: 2 )