By Topic

Multiobjective optimization of safety related systems: an application to short-term conflict alert

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Everson, R.M. ; Dept. of Comput. Sci., Univ. of Exeter, UK ; Fieldsend, J.E.

Many safety related and critical systems warn of potentially dangerous events; for example, the short term conflict alert (STCA) system warns of airspace infractions between aircraft. Although installed with current technology, such critical systems may become out of date due to changes in the circumstances in which they function, operational procedures, and the regulatory environment. Current practice is to "tune," by hand, the many parameters governing the system in order to optimize the operating point in terms of the true positive and false positive rates, which are frequently associated with highly imbalanced costs. We cast the tuning of critical systems as a multiobjective optimization problem. We show how a region of the optimal receiver operating characteristic (ROC) curve may be obtained, permitting the system operators to select the operating point. We apply this methodology to the STCA system, using a multiobjective (1+1) evolution strategy, showing that we can improve upon the current hand-tuned operating point, as well as providing the salient ROC curve describing the true positive versus false positive tradeoff. We also provide results for three-objective optimization of the alert response time in addition to the true and false positive rates. Additionally, we illustrate the use of bootstrapping for representing evaluation uncertainty on estimated Pareto fronts, where the evaluation of a system is based upon a finite set of representative data.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:10 ,  Issue: 2 )