By Topic

Redundancy and computational efficiency in Cartesian genetic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. F. Miller ; Dept. of Electron., Univ. of York, Heslington, UK ; S. L. Smith

The graph-based Cartesian genetic programming system has an unusual genotype representation with a number of advantageous properties. It has a form of redundancy whose role has received little attention in the published literature. The representation has genes that can be activated or deactivated by mutation operators during evolution. It has been demonstrated that this "junk" has a useful role and is very beneficial in evolutionary search. The results presented demonstrate the role of mutation and genotype length in the evolvability of the representation. It is found that the most evolvable representations occur when the genotype is extremely large and in which over 95% of the genes are inactive.

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:10 ,  Issue: 2 )