Cart (Loading....) | Create Account
Close category search window
 

Processing moving queries over moving objects using motion-adaptive indexes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gedik, B. ; Coll. of Comput., Georgia Inst. of Technol., USA ; Kun-Lung Wu ; Yu, P.S. ; Ling Liu

This paper describes a motion-adaptive indexing scheme for efficient evaluation of moving continual queries (MCQs) over moving objects. It uses the concept of motion-sensitive bounding boxes (MSBs) to model moving objects and moving queries. These bounding boxes automatically adapt their sizes to the dynamic motion behaviors of individual objects. Instead of indexing frequently changing object positions, we index less frequently changing object and query MSBs, where updates to the bounding boxes are needed only when objects and queries move across the boundaries of their boxes. This helps decrease the number of updates to the indexes. More importantly, we use predictive query results to optimistically precalculate query results, decreasing the number of searches on the indexes. Motion-sensitive bounding boxes are used to incrementally update the predictive query results. Furthermore, we introduce the concepts of guaranteed safe radius and optimistic safe radius to extend our motion-adaptive indexing scheme to evaluating moving continual k-nearest neighbor (kNN) queries. Our experiments show that the proposed motion-adaptive indexing scheme is efficient for the evaluation of both moving continual range queries and moving continual kNN queries.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 5 )

Date of Publication:

May 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.