By Topic

Test-cost sensitive classification on data with missing values

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qiang Yang ; Dept. of Comput. Sci., Hong Kong Univ. of Sci. & Technol., Kowloon, China ; Ling, C. ; Xiaoyong Chai ; Rong Pan

In the area of cost-sensitive learning, inductive learning algorithms have been extended to handle different types of costs to better represent misclassification errors. Most of the previous works have only focused on how to deal with misclassification costs. In this paper, we address the equally important issue of how to handle the test costs associated with querying the missing values in a test case. When an attribute contains a missing value in a test case, it may or may not be worthwhile to take the extra effort in order to obtain a value for that attribute, or attributes, depending on how much benefit the new value bring about in increasing the accuracy. In this paper, we consider how to integrate test-cost-sensitive learning with the handling of missing values in a unified framework that includes model building and a testing strategy. The testing strategies determine which attributes to perform the test on in order to minimize the sum of the classification costs and test costs. We show how to instantiate this framework in two popular machine learning algorithms: decision trees and naive Bayesian method. We empirically evaluate the test-cost-sensitive methods for handling missing values on several data sets.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 5 )