By Topic

Pattern discovery of fuzzy time series for financial prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chiung-Hon Leon Lee ; Dept. of Electr. Eng., Nat. Chung Cheng Univ., Ming-Hsiung, Taiwan ; Liu, A. ; Wen-Sung Chen

A fuzzy time series data representation method based on the Japanese candlestick theory is proposed and used in assisting financial prediction. The Japanese candlestick theory is an empirical model of investment decision. The theory assumes that the candlestick patterns reflect the psychology of the market, and the investors can make their investment decision based on the identified candlestick patterns. We model the imprecise and vague candlestick patterns with fuzzy linguistic variables and transfer the financial time series data to fuzzy candlestick patterns for pattern recognition. A fuzzy candlestick pattern can bridge the gap between the investors and the system designer because it is visual, computable, and modifiable. The investors are not only able to understand the prediction process, but also to improve the efficiency of prediction results. The proposed approach is applied to financial time series forecasting problem for demonstration. By the prototype system which has been established, the investment expertise can be stored in the knowledge base, and the fuzzy candlestick pattern can also be identified automatically from a large amount of the financial trading data.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 5 )