Cart (Loading....) | Create Account
Close category search window
 

Routing table partitioning for speedy packet lookups in scalable routers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nian-Feng Tzeng ; Center for Adv. Comput. Studies, Univ. of Louisiana, Lafayette, LA, USA

Most of the high-performance routers available commercially these days equip each of their line cards (LCs) with a forwarding engine (FE) to perform table lookups locally. This work introduces and evaluates a technique for speedy packet lookups, called SPAL, in such routers. The BGP routing table under SPAL is fragmented into subsets which constitute forwarding tables for different FEs so that the number of table entries in each FE drops as the router grows. This reduction in the forwarding table size drastically lowers the amount of SRAM (e.g., L3 data cache) required in each LC to hold the trie constructed according to the prefix matching algorithm. SPAL calls for caching the lookup result of a given IP address at its home LC (denoted by LCho, using the LR-cache), such that the result can satisfy the lookup requests for the same address from not only LCho, but also other LCs quickly. Our trace-driven simulation reveals that SPAL leads to improved mean lookup performance by a factor of at least 2.5 (or 4.3) for a router with three (or 16) LCs, if the LR-cache contains 4K blocks. SPAL achieves this significant improvement, while greatly lowering the SRAM (i.e., the L3 data cache plus the LR-cache combined) requirement in each LC and possibly shortening the worst-case lookup time (thanks to fewer memory accesses during longest-prefix matching search) when compared with a current router without partitioning the routing table. It promises good scalability (with respect to routing table growth) and exhibits a small mean lookup time per packet. With its ability to speed up packet lookup performance while lowering overall SRAM substantially, SPAL is ideally applicable to the new generation of scalable high-performance routers.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:17 ,  Issue: 5 )

Date of Publication:

May 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.