By Topic

Optimizing the length of checking sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hierons, R.M. ; Sch. of Inf. Syst., Comput. & Math., Brunel Univ., Uxbridge, UK ; Ural, H.

A checking sequence, generated from a finite state machine, is a test sequence that is guaranteed to lead to a failure if the system under test is faulty and has no more states than the specification. The problem of generating a checking sequence for a finite state machine M is simplified if M has a distinguishing sequence: an input sequence D~ with the property that the output sequence produced by M in response to D is different for the different states of M. Previous work has shown that, where a distinguishing sequence is known, an efficient checking sequence can be produced from the elements of a set A of sequences that verify the distinguishing sequence used and the elements of a set γ of subsequences that test the individual transitions by following each transition t by the distinguishing sequence that verifies the final state of t. In this previous work, A is a predefined set and γ is defined in terms of A. The checking sequence is produced by connecting the elements of γ and A to form a single sequence, using a predefined acyclic set Ec of transitions. An optimization algorithm is used in order to produce the shortest such checking sequence that can be generated on the basis of the given A and Ec. However, this previous work did not state how the sets A and Ec should be chosen. This paper investigates the problem of finding appropriate A and Ec to be used in checking sequence generation. We show how a set A may be chosen so that it minimizes the sum of the lengths of the sequences to be combined. Further, we show that the optimization step, in the checking sequence generation algorithm, may be adapted so that it generates the optimal Ec. Experiments are used to evaluate the proposed method.

Published in:

Computers, IEEE Transactions on  (Volume:55 ,  Issue: 5 )