By Topic

Reducing burn-in time through high-voltage stress test and Weibull statistical analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zakaria, M.F. ; Freescale Semicond., Malaysia ; Kassim, Z.A. ; Ooi, M.P. ; Demidenko, S.

To guarantee an industry standard of reliability in ICs, manufacturers incorporate special testing techniques into the circuit manufacturing process. For most electronic devices, the specific reliability required is quite high, often producing a lifespan of several years. Testing such devices for reliability under normal operating conditions would require a very long period of time to gather the data necessary for modeling the device's failure characteristics. Under this scenario, a device might become obsolete by the time the manufacturer could guarantee its reliability. High-voltage stress testing (HVST) is common in IC manufacturing, but publications comparing it with other test and burn-in methods are scarce. This article shows that the use of HVST can dramatically reduce the amount of required burn-in.

Published in:

Design & Test of Computers, IEEE  (Volume:23 ,  Issue: 2 )