By Topic

Separating resource reservations from service requests to improve the performance of optical burst-switching networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barakat, N. ; Dept. of Electr. & Comput. Eng., Toronto Univ., Ont. ; Sargent, Edward H.

In this paper, we introduce a new signalling architecture called Dual-header Optical Burst Switching (DOBS) for next generation burst-switching optical networks. DOBS decouples the resource reservation process from the service request process in core nodes and allows for delayed scheduling to be implemented. This relaxes the constraints on burst scheduling operations and allows the offset sizes of bursts to be precisely controlled in core nodes without the use of fiber delay line buffers. This allows for increased flexibility, control, and performance. To demonstrate the benefit of delayed scheduling and core. node offset control, we examine the performance of a DOBS system in which the offset size of every burst on a core link is set to a constant value. Using simulation and analysis, we show that the resulting constant-scheduling-offset (CSO) system realizes lower ingress delay, higher throughput, and better fairness than conventional single-header OBS systems, while simultaneously requiring only O(1) burst scheduling complexity. In a 16-channel system with full wavelength conversion and no fiber delay line buffers, the CSO DOBS system achieved a blocking probability 50% lower than that of a similar LAUC-VF JET OBS system. The CSO DOBS system also achieved perfect fairness, both with respect to burst length and with respect to the residual path length of bursts

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:24 ,  Issue: 4 )