Cart (Loading....) | Create Account
Close category search window

Bayesian estimation of motion vector fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Konrad, J. ; Inst. Nat. de la Recherche Sci., Quebec Univ., Montreal, Que., Canada ; Dubois, E.

A stochastic approach to the estimation of 2D motion vector fields from time-varying images is presented. The formulation involves the specification of a deterministic structural model along with stochastic observation and motion field models. Two motion models are proposed: a globally smooth model based on vector Markov random fields and a piecewise smooth model derived from coupled vector-binary Markov random fields. Two estimation criteria are studied. In the maximum a posteriori probability (MAP) estimation, the a posteriori probability of motion given data is maximized, whereas in the minimum expected cost (MEC) estimation, the expectation of a certain cost function is minimized. Both algorithms generate sample fields by means of stochastic relaxation implemented via the Gibbs sampler. Two versions are developed: one for a discrete state space and the other for a continuous state space. The MAP estimation is incorporated into a hierarchical environment to deal efficiently with large displacements

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:14 ,  Issue: 9 )

Date of Publication:

Sep 1992

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.