By Topic

Terahertz laser based standoff imaging system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Definition and design of a terahertz standoff imaging system has been theoretically investigated. Utilizing terahertz quantum cascade lasers for transmitter and local oscillator, a detailed analysis of the expected performance of an active standoff imaging system based on coherent heterodyne detection has been carried out. Five atmospheric windows between 0.3 THz and 4.0 THz have been identified and quantified by carrying out laboratory measurements of atmospheric transmission as a function of relative humidity. Using the approximate center frequency of each of these windows, detailed calculations of expected system performance vs target distance, pixel resolution, and relative humidity were carried out. It is shown that with 1.5 THz laser radiation, a 10m standoff distance, 1 m times 1 m target area, and a 1cm times 1cm pixel resolution, a viable imaging system should be achievable. Performance calculations for various target distances, target pixel resolution, and laser frequency are presented

Published in:

Applied Imagery and Pattern Recognition Workshop, 2005. Proceedings. 34th

Date of Conference:

1-1 Dec. 2005