By Topic

Practical hybrid convolution algorithm for helical CT reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. A. Zamyatin ; Bio-Imaging Res. Inc., Lincolnshire, IL, USA ; K. Taguchi ; M. D. Silver

Great strides have been taken in the last few years in the development of both approximate and exact reconstruction algorithms for helical cone-beam computed tomography (CT). However, it is hard to achieve a good balance between reconstruction speed, flexibility, and image quality. We propose a new algorithm that combines the advantages of many previously published algorithms. It uses the so-called hybrid convolution, which is the sum of the ramp and Hilbert filters. In this work, we evaluate the new algorithm and compare it to other candidates in terms of spatial resolution, noise, and image artifacts. Our evaluation demonstrated that the proposed algorithm outperforms the helical Feldkamp algorithm in terms of image noise uniformity and the cone beam artifact. We also propose a simplified version for the over-scan reconstruction.

Published in:

IEEE Transactions on Nuclear Science  (Volume:53 ,  Issue: 1 )