Cart (Loading....) | Create Account
Close category search window
 

Frequency-dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jianlong Chen ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX ; Sanchez-Sinencio, E. ; Silva-Martinez, J.

Recent progress of wide-band communication systems demands high-frequency circuits. Conventionally, the linearity of the operational transconductance amplifier and capacitor (OTA-C) has been analyzed using Taylor series expansion. Unfortunately, this approach does not predict the frequency-dependent linearity degradation. Thus, to properly design linearized OTAs, the frequency dependence of these coefficients must be determined. In this paper, we present a frequency-dependent harmonic-distortion analytical method applied to a linear-enhanced OTA. This OTA, which is suitable for high-frequency operation, uses three linearization techniques simultaneously: 1) attenuation through floating-gate MOS transistors; 2) source degeneration; and 3) polynomial cancellation techniques. By using the harmonic-distortion analysis, some properties on the performance of OTA are used to improve the performance of OTA-C based circuits at high frequencies. A 0.5-mum CMOS OTA simulation and experimental results are shown to verify the harmonic-distortion analytical method

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:53 ,  Issue: 3 )

Date of Publication:

March 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.