By Topic

Use of radar and optical remotely sensed data for soil moisture retrieval over vegetated areas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Notarnicola, C. ; Politecnico di Bari, Italy ; Angiulli, M. ; Posa, F.

This work assesses the possibility of obtaining soil moisture maps of vegetated fields using information derived from radar and optical images. The sensor and field data were acquired during the SMEX'02 experiment. The retrieval was obtained by using a Bayesian approach, where the key point is the evaluation of probability density functions (pdfs) based on the knowledge of soil parameter measurements and of the corresponding remotely sensing data. The purpose is to determine a useful parameterization of vegetation backscattering effects through suitable pdfs to be later used in the inversion algorithm. The correlation coefficients between measured and extracted soil moisture values are R=0.68 for C-band and R=0.60 for L-band. The pdf parameters have been found to be correlated to the vegetation water content estimated from a Landsat image with correlation coefficients of R=0.65 and 0.91 for C- and L-bands, respectively. In consideration of these correlations, a second run of the Bayesian procedure has been performed where the pdf parameters are variable with vegetation water content. This second procedure allows the improvement of inversion results for the L-band. The results derived from the Bayesian approach have also been compared with a classical inversion method that is based on a linear relationship between soil moisture and the backscattering coefficients for horizontal and vertical polarizations.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 4 )