By Topic

Influence of geometrical factors on crop backscattering at C-band

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Della Vecchia, A. ; Dipt. di Informatica, Univ. di Roma "Tor Vergata", Rome, Italy ; Ferrazzoli, P. ; Guerriero, L. ; Blaes, X.
more authors

Several efforts, aimed at developing and refining crop backscattering models, have been done during the last years. Although important advances have been achieved, it is recognized that further work is required, both in the electromagnetic characterization of single scatterers and in the combination of contributions. This work is focused on the description of leaf geometry and of the internal structure of stems. Recently developed routines, able to model the scattering cross sections of curved sheets and hollow cylinders, are adopted for this purpose and run within the multiple-scattering model developed at the University of Rome "Tor Vergata". Input parameters are taken from experimental campaigns. In particular, ground data collected over a maize field at the Central Plain site in 1988, over wheat and maize fields at the Loamy site in 2003, and over wheat fields at the Matera site in 2001 and 2003 are considered. The multitemporal backscattering coefficients at C-band are simulated. The results obtained under different assumptions are compared to each other, and with C-band radar signatures collected over the same fields. The influence of some critical factors, affecting crop backscattering, is discussed. It is demonstrated that a more detailed scatterer characterization may improve the model accuracy, especially in the case of hollow stems.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 4 )