Cart (Loading....) | Create Account
Close category search window
 

On measuring the change in size of pulmonary nodules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Reeves, A.P. ; Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA ; Chan, A.B. ; Yankelevitz, D.F. ; Henschke, C.I.
more authors

The pulmonary nodule is the most common manifestation of lung cancer, the most deadly of all cancers. Most small pulmonary nodules are benign, however, and currently the growth rate of the nodule provides for one of the most accurate noninvasive methods of determining malignancy. In this paper, we present methods for measuring the change in nodule size from two computed tomography image scans recorded at different times; from this size change the growth rate may be established. The impact of partial voxels for small nodules is evaluated and isotropic resampling is shown to improve measurement accuracy. Methods for nodule location and sizing, pleural segmentation, adaptive thresholding, image registration, and knowledge-based shape matching are presented. The latter three techniques provide for a significant improvement in volume change measurement accuracy by considering both image scans simultaneously. Improvements in segmentation are evaluated by measuring volume changes in benign or slow growing nodules. In the analysis of 50 nodules, the variance in percent volume change was reduced from 11.54% to 9.35% (p=0.03) through the use of registration, adaptive thresholding, and knowledge-based shape matching.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:25 ,  Issue: 4 )

Date of Publication:

April 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.