By Topic

Contribution of DFIG-based wind farms to power system short-term frequency regulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Anaya-Lara, O. ; Sch. of Electr. & Electron. Eng., Univ. of Manchester, UK ; Hughes, F.M. ; Jenkins, N. ; Strbac, G.

A control strategy that provides a doubly-fed induction generator (DFIG)-based wind farm with the capability to provide short-term frequency regulation is investigated. The controller manipulates dynamically the position of the DFIG rotor flux vector to slow down the generator allowing for a temporary surge in the power output, which helps to reduce the frequency drop following the transient period after the loss of network generation. A generic network that combines synchronous and wind-farm generation has been modelled and used for control system design and dynamic assessment. Studies are conducted for the DFIG operating at different speed and power output conditions. Simulation results are described which illustrate the contributions to frequency support of DFIG-based wind farms controlled with the proposed strategy. Machine data and control parameters are provided.

Published in:

Generation, Transmission and Distribution, IEE Proceedings-  (Volume:153 ,  Issue: 2 )