By Topic

Spatially correlated multiple-antenna channel capacity distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
T. Ratnarajah ; ECIT, Queen's Univ. of Belfast, UK

The capacity of multiple-input multiple-output (MIMO) wireless communication systems over spatially correlated Rayleigh distributed flat fading channels with complex Gaussian additive noise is investigated. Specifically, the probability density function of the mutual information between transmitted and received complex signals of MIMO systems is derived. Using this density the closed-form ergodic capacity (mean), delay-limited capacity, capacity variance and outage capacity formulas for spatially correlated channels are derived and then these formulas are evaluated numerically. Numerical results show how the channel correlation degrades the capacity of MIMO communication systems. It is also shown that the density of mutual information of correlated/uncorrelated MIMO systems can be approximated by a Gaussian density with derived mean and variance, even for a finite number of inputs and outputs.

Published in:

IEE Proceedings - Communications  (Volume:153 ,  Issue: 2 )