By Topic

Application of feedback linearisation to the tracking and almost disturbance decoupling control of multi-input multi-output nonlinear system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chen, C.C. ; Dept. of Electr. Eng., Nat. Formosa Univ., Yunlin, Taiwan ; Lin, Y.-F.

The tracking and almost disturbance decoupling problem of multi-input multi-output nonlinear systems based on the feedback linearisation approach are studied. The main contribution of this study is to construct a controller, under appropriate conditions, such that the resulting closed-loop system is valid for any initial condition and bounded tracking signal with the following characteristics: input-to-state stability with respect to disturbance inputs and almost disturbance decoupling, that is, the influence of disturbances on the L2 norm of the output tracking error can be arbitrarily attenuated by changing some adjustable parameters. One example, which cannot be solved by the first paper of the almost disturbance decoupling problem on account of requiring some sufficient conditions that the nonlinearities multiplying the disturbances satisfy structural triangular conditions, is proposed to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by the proposed approach. To demonstrate the practical applicability, a famous half-car active suspension system has been investigated.

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:153 ,  Issue: 3 )