By Topic

Bayesian filtering of Poisson noise using local statistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rabbani, M. ; Eastman Kodak Co., Rochester, NY, USA

Images recorded at low-light levels inherently suffer from Poisson noise. A filter based on the maximum a posteriori probability (MAP) criterion is developed to remove this noise. The filter is adaptive; it responds to local changes in image statistics and, thus, removes the noise along the edges without significantly affecting the edge sharpness. It does not require any a priori information about the original image because all the parameters needed for the filter are estimated from the noisy image by assuming local stationarity. Additionally, the simple structure of the filter can be easily implemented in hardware

Published in:

Acoustics, Speech and Signal Processing, IEEE Transactions on  (Volume:36 ,  Issue: 6 )