Cart (Loading....) | Create Account
Close category search window

Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Kund, M. ; Infineon Technol. AG, Munich ; Beitel, G. ; Pinnow, C.-U. ; Rohr, T.
more authors

We report on the electrical characterisation of nanoscale conductive bridging memory cells, composed of a thin solid state electrolyte layer sandwiched between an oxidizable anode and an inert cathode. Low power resistive switching operation, the large scalability potential including multi-level-capability (MLC) and the investigated reliability aspects, like retention at elevated temperature, operating temperature and endurance, make CBRAM a very promising non-volatile emerging memory technology

Published in:

Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International

Date of Conference:

5-5 Dec. 2005

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.