By Topic

GIDL (gate-induced drain leakage) and parasitic schottky barrier leakage elimination in aggressively scaled HfO/sub 2/TiN FinFET devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)

We demonstrate that for aggressively scaled FinFETs, with 2nm HfO 2 and TiN metal gate (i.e., workfunction close to midgap), several parasitic leakage mechanisms that impact the off-state current become dominant. We provide a detailed characterization of these mechanisms as well as design guidelines for eliminating them by careful junction dopant placement and S/D silicide engineering in order to achieve high Ion/Ioff ratios. Up to 20times GIDL reduction is achieved with minimum drive loss with asymmetric extensions. Using selective epitaxy on S/D, suppression of parasitic Schottky effects is also demonstrated resulting in a Ioff reduction of 10000times

Published in:

Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International

Date of Conference:

5-5 Dec. 2005