By Topic

Novel channel materials for ballistic nanoscale MOSFETs-bandstructure effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rahman, A. ; QR Dept., Intel Corp., Hillsboro, OR ; Klimeck, G. ; Lundstrom, Mark

Performance limits of unstrained n- and p- MOSFETs with Si, Ge, GaAs and InAs channel materials are investigated using a 20 band sp3d5s*-SO semi-empirical atomistic tight-binding model and a top-of-the-barrier seminumerical ballistic transport model. It is observed that although the deeply scaled III-V devices offer very high electron injection velocities, their very low conduction band density-of-states strongly degrades their performance. Due to the high density-of-states for both electrons and holes in Ge, nanoscale devices with Ge as channel material are found to outperform all other materials considered

Published in:

Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International

Date of Conference:

5-5 Dec. 2005