Cart (Loading....) | Create Account
Close category search window
 

Degradation and breakdown of 0.9 nm EOT SiO/sub 2/ ALD HfO/sub 2/metal gate stacks under positive constant voltage stress

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

By means of leakage current measurements, charge pumping and TDDB analysis, we construct a consistent model for the degradation and breakdown of 0.9 nm EOT atomic layer deposited (ALD) HfO2. During degradation, traps and two-trap clusters are formed in the HfO 2 giving rise to considerable SILC. The two-trap clusters subsequently wear out, finally leading to an abrupt hard breakdown. We demonstrate that 0.9 nm EOT ALD HfO2 is intrinsically reliable under constant voltage stress if hard breakdown is used as a failure criterion

Published in:

Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International

Date of Conference:

5-5 Dec. 2005

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.