Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Fast adaptive blind beamforming algorithm for antenna array in CDMA systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jian Yang ; Dept. of Autom., Univ. of Sci. & Technol. of China, Anhui, China ; Hongsheng Xi ; Feng Yang ; Yu Zhao

In this paper, the maximum signal-to-interference-plus-noise ratio (MSINR) beamforming problem in antenna-array CDMA systems is considered. In this paper, a modified MSINR criterion presented in a previous paper is interpreted as an unconstrained scalar cost function. By applying recursive least squares (RLS) to minimize the cost function, a novel blind adaptive beamforming algorithm to estimate the beamforming vector, which optimally combines the desired signal contributions from different antenna elements while suppressing noise and interference, is derived. Neither the knowledge of the channel conditions (fading coefficients, signature sequences and timing of interferers, statistics of other noises, etc.) nor training sequence is required. Compared with previously published adaptive beamforming algorithms based on the stochastic-gradient method, it has faster convergence and better tracking capability in the time-varying environment. Simulation results in various signal environments are presented to show the performance of the proposed algorithm.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:55 ,  Issue: 2 )