By Topic

Equalization for OFDM over doubly selective channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
I. Barhumi ; Katholieke Univ. Leuven-ESAT/SCD-SISTA, Heverlee, Belgium ; G. Leus ; M. Moonen

In this paper, we propose a time-domain as well as a frequency-domain per-tone equalization for orthogonal frequency-division multiplexing (OFDM) over doubly selective channels. We consider the most general case, where the channel delay spread is larger than the cyclic prefix (CP), which results in interblock interference (IBI). IBI in conjunction with the Doppler effect destroys the orthogonality between subcarriers and, hence, results in severe intercarrier interference (ICI). In this paper, we propose a time-varying finite-impulse-response (TV-FIR) time-domain equalizer (TEQ) to restore the orthogonality between subcarriers, and hence to eliminate ICI/IBI. Due to the fact that the TEQ optimizes the performance over all subcarriers in a joint fashion, it has a poor performance. An optimal frequency-domain per-tone equalizer (PTEQ) is then obtained by transferring the TEQ operation to the frequency domain. Through computer simulations, we demonstrate the performance of the proposed equalization techniques.

Published in:

IEEE Transactions on Signal Processing  (Volume:54 ,  Issue: 4 )