By Topic

Differential space-time modulation with eigen-beamforming for correlated MIMO fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiaodong Cai ; Dept. of Electr. & Comput. Eng., Univ. of Miami, Coral Gables, FL, USA ; G. B. Giannakis

In this paper, joint differential space-time modulation (DSTM) and eigen-beamforming for correlated multiple-input multiple-output (MIMO) fading channels. While DSTM does not require knowledge of each channel realization, the channel's spatial correlation can be easily estimated without training at the receiver and exploited by the transmitter to enhance the error probability performance. A transmission scheme is developed here that combines beamforming with differential multiantenna modulation based on orthogonal space-time block coding. Error probability is analyzed for both spatially correlated and independent Rayleigh fading channels. Based on the error probability analysis, power loading coefficients are derived to improve performance. The analytical and simulation results presented here corroborate that the proposed scheme can achieve considerable performance gain in correlated channels relative to DSTM without beamforming.

Published in:

IEEE Transactions on Signal Processing  (Volume:54 ,  Issue: 4 )