By Topic

Nonparametric change detection and estimation in large-scale sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ting He ; Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA ; Ben-David, S. ; Lang Tong

The problem of detecting changes in the distribution of alarmed sensors is considered. Under a nonparametric change detection framework, several detection and estimation algorithms are presented based on the Vapnik-Chervonenkis (VC) theory. Theoretical performance guarantees are obtained by providing error exponents for false-alarm and miss detection probabilities. Recursive algorithms for the efficient computation of test statistics are derived. The estimation problem is also considered in which, after detection is made, the location with maximum distribution change is estimated.

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 4 )