Cart (Loading....) | Create Account
Close category search window
 

Performance analysis of the FastICA algorithm and Crame´r-rao bounds for linear independent component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tichavsky, P. ; Inst. of Inf. Theor. & Autom., Acad. of Sci. of the Czech Republic, Prague, Czech Republic ; Koldovsky, Z. ; Oja, E.

The FastICA or fixed-point algorithm is one of the most successful algorithms for linear independent component analysis (ICA) in terms of accuracy and computational complexity. Two versions of the algorithm are available in literature and software: a one-unit (deflation) algorithm and a symmetric algorithm. The main result of this paper are analytic closed-form expressions that characterize the separating ability of both versions of the algorithm in a local sense, assuming a "good" initialization of the algorithms and long data records. Based on the analysis, it is possible to combine the advantages of the symmetric and one-unit version algorithms and predict their performance. To validate the analysis, a simple check of saddle points of the cost function is proposed that allows to find a global minimum of the cost function in almost 100% simulation runs. Second, the Crame´r-Rao lower bound for linear ICA is derived as an algorithm independent limit of the achievable separation quality. The FastICA algorithm is shown to approach this limit in certain scenarios. Extensive computer simulations supporting the theoretical findings are included.

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 4 )

Date of Publication:

April 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.