Cart (Loading....) | Create Account
Close category search window
 

Numerical modeling of an indoor wireless environment for the performance evaluation of WLAN systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Zygiridis, T.T. ; Dept. of Electr. & Comput. Eng., Aristotle Univ., Thessaloniki ; Kosmidou, E.P. ; Prokopidis, K.P. ; Kantartzis, N.V.
more authors

A site-specific numerical model, based on the finite-difference time-domain method, is developed in this paper for the indoor radio channel. The scenario of interest is concerned with wave propagation in a typical office environment, for which several simulations are performed considering different placements of the transmitting antenna. Both the 2- and 5-GHz bands are examined, where contemporary wireless local area networks operate. Important channel characteristics are evaluated via the estimation of received power levels, as well as the examination of small-scale fading and time dispersion

Published in:

Magnetics, IEEE Transactions on  (Volume:42 ,  Issue: 4 )

Date of Publication:

April 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.